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Abstract
Argumentative explainable artificial intelligence employs argumen-

tation theory to explain the mechanisms of machine learning. Pre-

vious approaches for explaining deep learning models collectively

compressed layers via clustering. However, this resulted in accumu-

lated information loss across layers, thereby degrading the fidelity

of explanations. We propose online activation value-aware clus-

tering and aggregation, a compression algorithm that preserves

the inference structure of the original neural network with greater

fidelity. The proposed method sequentially compresses each layer,

immediately recalculates activation values following compression,

and rectifies inter-layer information loss using a singular-value-

scaled ridge alignment approach. To evaluate the effectiveness of the

proposed method, we introduce four novel quantitative metrics. In-

put–output fidelity and structural fidelity measure how accurately

the compressed model preserves the original model predictions

and internal activations. Input–output perturbation consistency

and structural perturbation consistency assess the similarity of the

changes induced by Gaussian-perturbed input data. Experiments

on three benchmark datasets (Breast Cancer, California Housing,

and HIGGS) demonstrate that our method achieves performance

improvements ranging from 12.9% to 53.7% across the four met-

rics, demonstrating significantly higher explanation fidelity than

existing approaches.

CCS Concepts
• Computing methodologies→ Semantic networks; Causal
reasoning and diagnostics.
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1 Introduction
Explainable Artificial Intelligence (XAI) aims to make the decision-

making processes of deep neural networks interpretable to hu-

mans [12, 14]. This is particularly important in high-stakes domains

such as healthcare [25], finance [11], and stock prices [13], where

model decisions must be understood and justified [7, 27]. To achieve

this, various approaches, such as intrinsic methods [2, 17, 33] and

post hoc methods [5, 20, 26, 29, 32], have been proposed. However,

these approaches often fail to accurately capture the underlying

mechanisms of the original models [3].

Argumentative XAI provides more intuitive and clear explana-

tions than traditional XAI methods by mapping a model’s internal

reasoning process onto argumentation frameworks [9]. In particular,

Potyka [23] theoretically demonstrates that Multi-Layer Percep-

trons (MLPs) can be interpreted as Quantitative Bipolar Argumen-

tation Frameworks (QBAFs), which quantitatively represent the

relationships such as attack and support among arguments [6, 24].

Based on this theoretical foundation, SpArX [3] proposes a pro-

totype model enabling argumentative explanations from tabular

data using MLPs, while ProtoArgNet[4] introduced a model based

on Sparse MLPs (SMLPs) to produce argumentative explanations

from image data. However, prior studies have not adequately ex-

plored how to compress reasoning mechanisms while preserving

them faithfully in argumentative explanations. Considering that

high-quality explanations must simultaneously exhibit high fidelity

to the original model and low cognitive complexity to the com-

pressed model, a fundamental trade-off exists between compression

ratio and fidelity [3]. Improving compression fidelity and efficiency

has the potential to reduce cognitive complexity, making this re-

search essential for advancing argumentative explanations towards

practical applications.

We propose Online Activation Value-aware Clustering and Ag-

gregation (OVCA), a novel compressionmethod for building faithful

argumentative explanations. Instead of simplifying all layers in one
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shot (which do not consider cumulative error [18]), our method

processes each layer sequentially and performs an online update of

activations after each compression. The online activation values is

not only used as input for the subsequent layer but also employed

to solve a linear equation involving activation values of the original

model, whose solution is then multiplied by the weight matrix.

This procedure minimizes information loss and reduces cumulative

error; additionally, singular values are incorporated as a form of

stabilization to address cases where the linear equation does not

yield a direct solution.

There is a lack of reliable metrics to accurately evaluate how

faithfully these compression methods explain the original model.

SpArX [3] introduces two metrics, input-output and structural un-

faithfulness. If these two values of metrics are zero, the compressed

model has the same mechanism as the original model. However,

these two metrics are sensitive to external factors. For instance,

increasing the model or batch size leads to corresponding increases

in these metrics. Because of this increase, it is impossible to com-

pare across models or datasets. Furthermore, these two metrics

lack discrimination power when comparing across compression

methods. We observed that differences in metrics value emerged

starting from the sixth decimal place. It could be argued that exist-

ing methods sufficiently approximate the mechanism of the original

model, resulting in metrics approaching zero. Nevertheless, this

phenomenon can be observed when evaluations are conducted with

small model or batch sizes, and the variation in metric performance

is also minimal under these conditions.

To overcome the limitations of the current metrics, we propose

four novel evaluation metrics, designed to address the limitations of

existing input-output and structural unfaithfulness measures. Input-

Output Fidelity (IOF) and Structural Fidelity (SF) quantitatively eval-

uate how closely the outputs or activation values of the compressed

model align with those of the original model. Input-Output Pertur-

bation Consistency (IOPC) and Structural Perturbation Consistency

(SPC) assess fidelity more rigorously by quantitatively measuring

how similarly, in both magnitude and direction, the outputs or ac-

tivation values of the compressed model respond to input feature

perturbations induced by Gaussian noise, compared to those of the

original model.

IOF and SF can be used in global explanations and local explana-

tions. IOPC and SPC can be used in global explanations, but not in

local explanations. The reason is written in definition 12. Global

explanations are methods that observe the mechanism through

which a model generally makes predictions based on specific crite-

ria and principles when given large amounts of data. In contrast,

local explanations analyze the mechanism specifically to clarify

why a particular prediction was made for an individual data in-

stance. In other words, global explanations help in understanding

the overall behavior of a model, while local explanations enhance

detailed understanding and trust regarding individual cases. Our

contributions are as follows:

• By proposing a novel compression technique, we minimize

performance degradation caused by cumulative error and

effectively preserve high fidelity even at higher compression

ratios, thus contributing to stable and reliable argumentative

explanations suitable for practical applications.

• We propose four quantitative metrics (IOF, SF, IOPC, and

SPC) to systematically evaluate both global and local faith-

fulness of compressed models. These metrics provide a stan-

dardized framework for objectively validating and compar-

ing the performance of various compression methodologies

in future research.

2 Related Work
2.1 Post-hoc Explanation Methods
Post-hoc XAI aims to interpret models, already trained, by analyz-

ing their inputs, outputs, and internal behavior without modifying

the model itself. Popular methods include feature attribution tech-

niques such as LIME [26] and SHAP [20], which highlight influential

input features by perturbing input samples or approximating local

gradients. Although these methods are widely adopted for their

ease of use, they often do not capture the full reasoning process of

the model and can be brittle under adversarial or out-of-distribution

perturbations [34]. Other post hoc approaches involve surrogate

modeling, such as training simpler models (e.g., decision trees) to

mimic the predictions of complex models. However, these surro-

gates rarely reflect the internal structure and can lead to misleading

conclusions [19]. Our method can be viewed as a structured sur-

rogate that retains internal semantics and interpretability through

principled layerwise aggregation.

2.2 Argumentative XAI
Argumentative explanations aim to transform neural networks into

QBAFs [9, 23]. Here, neurons correspond to arguments, and edges

between neurons represent relations such as attack or support

among arguments. SpArx [3] proposes explaining in tabular data to

transform MLPs to QBAFs. ProtoArgNet proposes explaining in im-

age data to transform SMLPs to QBAFs. Recent works discuss how

QBAFs explain specific domains in deep learning. On the other side,

our work focuses on improving and discussing the compression

process, which represents the common underlying logic shared by

these recent works.

2.3 Model Compression
Classical compression methods include pruning [15, 18], quanti-

zation [1], and knowledge distillation (KD) [16, 21, 21, 36]. These

methods aim to reduce model size and inference cost. However,

these methods generally ignore mechanism preservation [3]. Clas-

sical compression methods prioritize prediction accuracy. We need

compression methods that prioritize prediction similarity. For an

extreme example, if the accuracy of the original model is 70%, the

classical compression methods consider compression successful if

the accuracy improves beyond 70%. In contrast, our desired com-

pression method does not aim to surpass this 70% accuracy but

rather aims to closely match the original prediction behavior.

2.4 Activation Value-aware SVD
Some works compress the model with Activation Value-aware Sin-

gular Value Decomposition (ASVD) [28, 35]. These works demon-

strate that the compression with activation distribution is possible

and effective. Singular Value Decomposition (SVD) reduces the
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number of parameters and computational complexity by approx-

imating a high-rank matrix with a low-rank representation [10],

such as𝑊 ≈ 𝑈̃ Σ 𝑉̃⊤. In our approach, we use only the singular

values without computing the matrices𝑈 and 𝑉 . Previous aggrega-

tion methods sum all weights directly. In contrast, our aggregation

method derives a projection matrix that maps original weights onto

compressed weights.

2.5 Fidelity Metrics in XAI
Faithfulness metrics are used to assess how well an explanation

reflects the original model. While many XAI works rely on deletion-

based metrics such as MoRF or ROAR, these can produce misleading

results under distribution shift or input corruption [38]. Moreover,

such methods assume monotonicity of importance scores, which

may not hold in nonlinear models [34]. Alternatives such as sen-

sitivity analysis and feature perturbation have been proposed to

mitigate these issues. Inspired by recent advances in robust fidelity

estimation [37], our metrics IOPC and SPC emphasize perturbation-

aware fidelity by measuring response similarity under input noise.

Thesemetrics providemore reliable estimates ofmodel–explanation

alignment, especially for evaluating compressed models across local

and global behaviors.

3 Preliminaries
Definition 1, 2, 4, 5, 6, 7 are from SpArX [3].

Definition 1 (Multi-Layer Perceptron (MLP)). AnMLPM is a tuple

(𝑉 , 𝐸, 𝐵,𝑊 ,𝜑). (𝑉 , 𝐸) is a directed graph. 𝑉 =
⊎𝑑+1

𝑙=0
𝑉𝑙 consists of

(ordered) layers of neurons; for 0 ≤ 𝑙 ≤ 𝑑 + 1,𝑉𝑙 = { 𝑣𝑙,1, . . . , 𝑣𝑙, |𝑉𝑙 | }
is the set of neurons in layer 𝑙 . We call 𝑉0 the input layer, 𝑉𝑑+1
the output layer, and 𝑉𝑙 (for 1 ≤ 𝑙 ≤ 𝑑) the 𝑙-th hidden layer; 𝑑

is the depth of the MLP. 𝐸 ⊆ ⋃𝑑
𝑙=0
(𝑉𝑙 × 𝑉𝑙+1) is a set of edges

between adjacent layers; if 𝐸 =
⋃𝑑

𝑙=0
(𝑉𝑙 ×𝑉𝑙+1), then the MLP is

called fully connected. 𝐵 = {𝑏1, . . . , 𝑏𝑑+1} is a set of bias vectors,
where for 1 ≤ 𝑙 ≤ 𝑑 + 1, 𝑏𝑙 ∈ R |𝑉𝑙 | .𝑊 = {𝑊 0, . . . ,𝑊 𝑑 } is a set of
weight matrices, where for 1 ≤ 𝑙 ≤ 𝑑 + 1,𝑊 𝑙 ∈ R |𝑉𝑙+1 |× |𝑉𝑙 | , such
that𝑊 𝑙

𝑗,𝑖
= 0 when (𝑣𝑙+1, 𝑗 , 𝑣𝑙,𝑖 ) ∉ 𝐸. 𝜑 : R → R is an activation

function.

Definition 2 (Quantitative Argumentation Framework (QBAF)).
A QBAF with domain D ⊆ R is a tuple (𝐴, 𝐸, 𝐵,𝑤) that consists of
• A = {𝑎1, . . . , 𝑎 |𝐴 | } is a set of arguments;

• 𝐸 ⊆ A × A is a set of directed edges;

• 𝐵 : A → D is a base score;

• 𝑤 : A ×A → R is a weight function.

Edges with negative/positive weights are called attack and support

edges, denoted by Att/Sup, respectively.

To interpret the arguments in an edge weighted QBAF, we con-

sidered a modular semantics based on the relationship between

QBAFs and MLPs noted earlier to interpret the arguments in an

edge weighted QBAF [23].

Definition 3 (Clustering of MLP).
• 𝐶 = {𝐶1,𝐶2, . . . ,𝐶𝑑 }
• 𝐶𝑙 = {𝑐𝑙,1, 𝑐𝑙,2, . . . , 𝑐𝑙, |𝐶𝑙 | }
• 𝑐𝑙,𝑖 = {𝑣M𝑙, 𝑗 |1 ≤ 𝑖 ≤ |𝑉M

𝑙
|, 𝑙𝑎𝑏𝑒𝑙 (𝑣M

𝑙, 𝑗
) = 𝑖}

Given MLPM and compression ratio 𝛾 ,𝐶 is the set of clustering

results of all hidden layers. 𝐶𝑙 is the clustering result of 𝑙th hidden

layer, and |𝐶𝑙 | =𝑚𝑎𝑥 (1,
⌊
𝛾 |𝑉M

𝑙
|
⌋
) = |𝑉 𝜇

𝑙
|. The label function as-

signs each node to the corresponding cluster label. For example, if

we cluster 𝑉M
1

= {1, 2, 5, 6, 8, 9, 10, 13, 14, 15} with 𝛾 = 0.4 and clus-

tering results are 𝐶1 = {{1, 2}, {5, 6}, {8, 9, 10}, {13, 14, 15}}, then
𝑙𝑎𝑏𝑒𝑙 (𝑣M

1,1
) = 1, 𝑙𝑎𝑏𝑒𝑙 (𝑣M

1,2
) = 1. Each 𝑐𝑙,𝑖 is a non-empty set.

Definition 4 (Parameters of Clustered MLP). Given an MLPM, let

(𝑉M , 𝐸M ) be the graphical structure of the corresponding classical
MLP 𝜇. Then for the cluster and edge aggregation functions Agg

𝑏

and Agg
𝑒
, respectively, 𝜇 is

(𝑉 𝜇 , 𝐸𝜇 , 𝐵𝜇 ,𝑊 𝜇 , 𝜑)

with parameters 𝐵𝜇 ,𝑊 𝜇
as follows:

• For every cluster-neuron 𝑣𝐶 ∈ 𝑉 𝜇
, the bias in 𝐵𝜇 of 𝑣𝐶 is

Agg
𝑏 (𝐶);

• For every edge (𝑣𝐶1, 𝑣𝐶2) ∈ 𝐸𝜇 , the weight in𝑊 𝜇
of the edge

is Agg
𝑒 ((𝐶1,𝐶2)).

Definition 5 (Graphical Structure of Clustered MLP). See Figure 1;

Given an MLPM and a clustering 𝐶 = ⊎𝑑
𝑙=1

𝐶𝑙 ofM, the graphical

structure of the corresponding clustered MLP 𝜇 is a directed graph

(𝑉 𝜇 , 𝐸𝜇 ) with:

𝑉 𝜇 =

𝑑+1⊎
𝑙=0

𝑉
𝜇

𝑙

Comprising (ordered) layers of cluster-neurons such that:

• The input layer 𝑉
𝜇

0
consists of a singleton cluster-neuron

𝑣 {0,𝑖 } for every input neuron 𝑣𝑖 ∈ 𝑉0.
• The 𝑙-th hidden layer of 𝜇 (for 0 < 𝑙 < 𝑑 + 1) consists of a
cluster-neurons 𝑐𝑙 .

• The output layer 𝑉
𝜇

𝑑+1 consists of a singleton cluster-neuron

𝑣 {𝑑+1, 𝑗 } for every output neuron 𝑣𝑑+1, 𝑗 ∈ 𝑉𝑑+1.
• 𝐸𝜇 =

⋃𝑑
𝑙=0
(𝑉 𝜇

𝑙
×𝑉 𝜇

𝑙+1).

Definition 6 (Structural Unfaithfulness). The local structural un-

faithfulness of 𝜇 toM with respect to input 𝑥 and dataset Δ is:

LM𝑠 =
∑︁
𝑥 ′∈Δ

𝜋𝑥 ′,𝑥

𝑑+1∑︁
𝑙=1

|𝐶𝑙 |∑︁
𝑗=1

∑︁
𝑣𝑙,𝑖 ∈𝑐𝑙,𝑗

(𝑂M
𝑙,𝑖
(𝑥 ′) −𝑂𝜇

𝑙,𝑖
(𝑥 ′))2 .

The global structural unfaithfulness is defined analogously by re-

moving the similarity terms 𝜋𝑥 ′,𝑥 .

Definition 7 (Cognitive Complexity).

Ω(𝜇) =
∏

0<𝑙≤𝑑+1
|𝑉 𝜇

𝑙
|.

A larger Ω(𝜇) suggests a more complex (hence less interpretable)

model. Therefore, balancing fidelity (IOF, SF, IOPC, SPC) against

cognitive complexity Ω(𝜇) is thus crucial for creating explanations

that are both accurate and comprehensible.
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Figure 1: The positive and negative weight relationships be-
tween neuron clusters (C2–C12) and the output node (𝑂0) as
an argumentation graph, after compressing a MLP trained
on the Breast Cancer dataset by 80% with the proposed OVCA
algorithm.

4 Proposed Method
Figure 2 is an overview of our method. We consider activation value

from both offline and online perspectives. In a scenario where layer

1 is compressed and layer 2 needs to be compressed subsequently,

clustering utilizes activation values obtained from layer 2. However,

the activation values obtained from the original model differ from

those obtained from a model where layer 1 is compressed. We call

the activation value obtained from the original model as offline

activation value and the recalculated activation value as online

activation values. A key difference between offline and online acti-

vation values is the consideration of clustering information from

the previous layer. We perform clustering and aggregation with

online activation values, thus, we minimize the information loss

and accumulated error.

Algorithm 1 is a four-step pseudo code for local explanation.

The reason for sampling Δ′ is that it is difficult for the results

of clustering and aggregation to be stable with only one piece of

data [3]. The PERTURB function generates data by adding some

noise to the data 𝑥 . Let 𝑝𝑖 be a weight variable that is based on the

distance between 𝑥 and 𝑥 ′. We use this 𝑝𝑖 to cluster. Step 2 is the

clustering based on the weights 𝑝𝑖 and the activation values 𝐴M𝑙
.

Steps 3 and 4 are the aggregation process based on the clustering

results. We used k-means as our clustering algorithm. Steps 3 and

4 are the aggregation process based on the clustering results. In

particular, the MERGENODES function in step 3 is equivalent to (i),

(ii), and step 4 is (iii) in definition 9. Global explanation first uses

the dataset Δ instead of the data 𝑥0. Therefore, it doesn’t calculate

𝜋 and doesn’t utilize 𝑝𝑖 during clustering and aggregation. Other

than that, the behavior is the same.

Definition 8 (Global Aggregation Functions).

(i) Bias aggregation

Agg𝑏 (𝐶𝑙 ) = {𝑏
𝜇

𝑙,𝑖
|𝑏𝜇
𝑙,𝑖

=
1

|𝑐𝑙,𝑖 |
∑︁

𝑣M
𝑙,𝑗
∈𝑐𝑙,𝑖

𝑏M
𝑙, 𝑗

, 𝑐𝑙,𝑖 ∈ 𝐶𝑙 , }

(ii) Incoming-weight aggregation

Agg
𝑒
in
((𝑉 𝜇

𝑙−1,𝐶𝑙 )) = {𝑒
𝜇

𝑙−1,𝑖, 𝑗 | 𝑒
𝜇

𝑙−1,𝑖, 𝑗 =
1

|𝑐𝑙,𝑗 |
∑︁

𝑣𝑙,𝑘 ∈𝑐𝑙,𝑗
𝑊 𝑙−1

𝑘,𝑖
,

𝑣
𝜇

𝑙−1,𝑖 ∈ 𝑉
𝜇

𝑙−1, 𝑐𝑙, 𝑗 ∈ 𝐶𝑙 }

(iii) Outgoing-weight aggregation

Agg
e

out
((𝐶𝑙 ,𝑉M𝑙+1 )) = {𝑒

𝜇

𝑙,𝑖, 𝑗
| 𝑒𝜇

𝑙,𝑖, 𝑗
=𝑊 𝑙

( 𝑗,:) · 𝜃 (:,𝑖 ) ,

𝑐𝑙,𝑖 ∈ 𝐶𝑙 , 𝑣M𝑙+1, 𝑗 ∈ 𝑉
M
𝑙+1 }

The aggregation function for edges operates in two stages. First per-

forming𝐴𝑔𝑔𝑒
𝑖𝑛

function, and then𝐴𝑔𝑔𝑒𝑜𝑢𝑡 function. After processing

𝐴𝑔𝑔𝑒
𝑖𝑛
, weights between 𝑉 𝑙−1

and 𝑉 𝑙
are compressed, enabling the

recalculation of activation values. 𝐴
𝜇

𝑙
∈ R |𝐶𝑙 |

denote the recalcu-

lated online activation values. 𝐴M
𝑙
∈ R |𝑉

M
𝑙
|
denote the original

model’s activation values. The main idea is to solve a linear system

between 𝐴
𝜇

𝑙
and 𝐴M

𝑙
to preserve the original’s information in a

compressed state. 𝜃 =
(
𝐴
𝜇⊤
𝑙

𝐴
𝜇

𝑙

)−1
𝐴
𝜇⊤
𝑙

𝐴M
𝑙

denotes the solution to

the linear system.

However, if 𝐴
𝜇

𝑙
is rank-deficient, the linear system may have no

solution (ill-posed) or may not have a unique solution. To maintain

the full-rank condition of the online activation values, we add a reg-

ularization matrix. The regularization matrix is 𝜆𝐼 . 𝜆 is the product

of a hyperparameter and the maximum singular value. Addition-

ally, this method prevents the compressed weights or model from

becoming ill-conditioned which amplify changes in the output in

response to small changes in the input.

Theorem 1. The linear system (𝐴𝜇⊤𝐴𝜇 + 𝜆𝐼 )𝜃 = 𝐴
𝜇⊤
𝑙

𝐴M
𝑙

has a
unique solution 𝜃 .

Proof. Suppose 𝜆 > 0. Let 𝐴𝜇
be the compressed activation

value matrix and 𝐴M be the original activation value matrix. We

show that the solution of the linear system always exists and is

unique.

For any vector 𝑥 , the following holds:

𝑥⊤ (𝐴𝜇⊤𝐴𝜇 )𝑥 = (𝐴𝜇𝑥)⊤ (𝐴𝜇𝑥) = ∥𝐴𝜇𝑥 ∥2
2
≥ 0.

Thus, the matrix 𝐴𝜇⊤𝐴𝜇
is positive semi-definite, and all eigen

values 𝜎2
𝑖
of 𝐴𝜇⊤𝐴𝜇

satisfy:

𝜎2𝑖 ≥ 0.

Since 𝜆 > 0, the eigenvalues of the matrix 𝜆𝐼 are all equal to 𝜆,

which are strictly positive. Therefore, the eigen values of the matrix

𝐴𝜇⊤𝐴𝜇 + 𝜆𝐼 are:
𝜎2𝑖 + 𝜆 > 0.

Hence, the matrix 𝐴𝜇⊤𝐴𝜇 + 𝜆𝐼 is positive definite, implying that

for any 𝑥 ≠ 0,

𝑥⊤ (𝐴𝜇⊤𝐴𝜇 + 𝜆𝐼 )𝑥 > 0.

This means that the matrix (𝐴𝜇⊤𝐴𝜇 + 𝜆𝐼 ) is full rank and invert-

ible (i.e., (𝐴𝜇⊤𝐴𝜇 + 𝜆𝐼 )−1 always exists).
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(a)
activation values

high info loss(b) previous method

(c) ours

𝑙 = 0

𝑙 = 1

𝑙 = 2

𝑙 = 3

Figure 2: An overview of the proposed method; (a) After determining how to combine nodes by clustering, our method extracts
activation values through the forward of MLP, and compresses layer 𝑙 = 1 by 50% through 𝐴𝑔𝑔𝑒

𝑖𝑛
and 𝐴𝑔𝑔𝑒𝑜𝑢𝑡 .(See Definition 8);

(b) Prior method use activation values from MLP models for compression, which breaks the connectivity between layers and
causes high information loss. (The previous method does not compress with method (a)); (c) The proposed method extracts and
clusters the activation values of the compressed model from 𝑙 = 2 to 𝑙 = 1 instead of the original model at 𝑙 = 2.

Therefore, the linear equation

(𝐴𝜇⊤𝐴𝜇 + 𝜆𝐼 )𝑥 = 𝐴𝜇⊤𝐴M

always has a unique solution. □

If all activation values in a layer are negative, then 𝜆 can be less

than or equal to zero. However, this scenario is uncommon and re-

alistically does not occur. Nevertheless, to mitigate these exception

cases, it is possible to create a ridge regression matrix by squaring

the singular values or to create a lasso regression matrix by taking

the absolute values. However, we did not experiment with ridge or

lasso methods, since ReLU activation does not produce negative

values, rendering these regularization approaches meaningless. De-

spite this approach, it is impossible to compute if the activation

values of a layer are all zero. However, this is an unusual result that

must not occur during the training process, regardless of whether

the model is compressed or not, so it is not considered a typical

case and is not considered in this study.

Definition 9 (Local Aggregation Functions). Fix an input 𝑥 and

its perturbed neighborhood Δ′ = {𝑥 ′
1
, . . . , 𝑥 ′𝑚} with weights 𝜋𝑥 ′ =

exp(−∥𝑥 ′ − 𝑥 ∥2/𝜎2).

(i) Bias aggregation

Agg𝑏 (𝐶𝑙 ) = {𝑏
𝜇

𝑙,𝑖
| 𝑏𝜇

𝑙,𝑖
=

1

|𝑐𝑙,𝑖 |
∑︁

𝑣M
𝑙,𝑗
∈𝑐𝑙,𝑖

𝑏M
𝑙, 𝑗

, 𝑐𝑙,𝑖 ∈ 𝐶𝑙 }

(ii) Incoming-weight aggregation

Agg
in
((𝑉 𝜇

𝑙−1,𝐶𝑙 )) = {𝑒
𝜇

𝑖,𝑗
| 𝑒𝜇

𝑖, 𝑗
=

𝜋𝑥 ′

|𝑐𝑙, 𝑗 |
∑︁

𝑣𝑙,𝑘 ∈𝑐𝑙,𝑗
𝑊 𝑙−1

𝑘,𝑖
,

𝑣
𝜇

𝑙−1,𝑖 ∈ 𝑉
𝜇

𝑙−1, 𝑐𝑙, 𝑗 ∈ 𝐶𝑙 }

(iii) Outgoing-weight aggregation

Agg
e

out
((𝐶𝑙 ,𝑉M𝑙+1 )) = {𝑒

𝜇

𝑙,𝑖, 𝑗
| 𝑒𝜇

𝑙,𝑖, 𝑗
=𝑊 𝑙

( 𝑗,:) · 𝜃 (:,𝑖 ) ,

𝑐𝑙,𝑖 ∈ 𝐶𝑙 , 𝑣M𝑙+1, 𝑗 ∈ 𝑉
M
𝑙+1 }

5 Evaluation Metric
We measure how the compressed model 𝜇 closely reproduces the

original model M using four metrics. All four metrics use the

following function: 𝑠𝑐𝑜𝑟𝑒 (𝑥) = 1

1+𝑥 , where higher values indicate
greater alignment with the original model. 𝜀 > 0 prevents division

by zero.
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Algorithm 1 OVCA for local explanation

Require: trained MLPM with layers 𝑉 , preserve ratio 𝛾 ∈ (0, 1],
neighborhood size 𝑁 , noise scale 𝜎noise, kernel width 𝜎 , and

ridge 𝜆

Ensure: compressed model 𝜇

1: 𝜇 ←M ⊲ initial copy

2: 𝑥0 ← target input

(1) Local sample generation
3: Δ′ ← Perturb(𝑥0, 𝑁 , 𝜎noise)
4: append 𝑥0 to Δ′

5: 𝜋 ← exp(−∥Δ′ − 𝑥0∥2/𝜎2)
6: for 𝑙 = 1 to 𝑑 do ⊲ iterate hidden layers

(2) 𝜋-weighted clustering
7: 𝐴M

𝑙
← 𝑂M

𝑙
(Δ′)

8: |𝐶𝑙 | ← max(1, ⌊𝛾 |𝑉𝑙 |⌋)
9: C𝑙 ← Clustering(𝐴𝑙 , |𝐶𝑙 |, sample_weight = 𝜋)
(3) Merge neurons

10: (𝑊 𝜇

𝑙
, 𝑏

𝜇

𝑙
) ← MergeNodes(𝑊 𝑙 , 𝑏𝑙 , C𝑙 , 𝜋)

11: Replace layer 𝑙 of 𝜇 with (𝑊 𝜇

𝑙
, 𝑏

𝜇

𝑙
)

(4) Ridge Alignment
12: if 𝑙 < 𝑑 then
13: 𝐴

𝜇

𝑙
← 𝑂

𝜇

𝑙
(Δ′)

14: 𝜃 =
(
𝐴
𝜇⊤
𝑙

𝐴
𝜇

𝑙
+ 𝜆𝐼

)−1
𝐴
𝜇⊤
𝑙

𝐴M
𝑙

15: 𝑊 𝑙+1 ← 𝜃𝑊 𝑙+1 ⊲ update layer 𝑙+1 in 𝜇

16: end if
17: end for
18: return 𝜇

Definition 10 (Input-Output Fidelity; IOF).

𝐼𝑂𝐹 = 𝑆𝑐𝑜𝑟𝑒 (
(𝑂M

𝑑+1 (Δ) −𝑂
𝜇

𝑑+1 (Δ))
2

(𝑂M
𝑑+1 (Δ))

2 + 𝜀
)

If 𝐼𝑂𝐹 = 1, the compressed model perfectly reproduces the output

probabilities of the original model. This metric is similar to input-

output unfaithfulness [3].

Definition 11 (Structural Fidelity; SF).

𝑆𝐹 = 𝑆𝑐𝑜𝑟𝑒

( ∑︁
(𝑙,𝑖, 𝑗 ) ∈S

(
𝑂M
𝑙, 𝑗
(Δ) −𝑂𝜇

𝑙,𝑖
(Δ)

)
2

∑︁
(𝑙,𝑖, 𝑗 ) ∈S

(𝑂M
𝑙, 𝑗
(Δ))2 + 𝜀

)
.

If SF = 1, the compressed model perfectly reproduces the hidden

activation values of the hidden layers in the original model. S ={
(𝑙, 𝑖, 𝑗) | 𝐶𝑙 ∈ 𝐶, 𝑐𝑙,𝑖 ∈ 𝐶𝑙 , 𝑣M𝑙, 𝑗 ∈ 𝑐𝑙,𝑖

}
Definition 12 (Input-Output Perturbation Consistency; IOPC).
Given a base input 𝑥 and a perturbed input 𝑥 ′ = 𝑥 + 𝛿 , let

𝐼𝑂𝑃𝐶 = 𝑆𝑐𝑜𝑟𝑒

( (𝛿M − 𝛿𝜇 )2
(𝛿M )2 + 𝜀

)
.

If IOPC = 1, the compressed model perfectly tracks the changes

in output probabilities of the original model induced by input per-

turbations [22, 34]. 𝛿M := 𝑂M
𝑑+1 (Δ) −𝑂

M
𝑑+1 (Δ

′) be the change of
ouptut of the original model. 𝛿𝜇 := 𝑂

𝜇

𝑑+1 (Δ) − 𝑂
𝜇

𝑑+1 (Δ
′) be the

change of output of the compressed model. Achieving a high score

on the IOPC metric requires accurately matching both the direction

and magnitude of output changes in the original model. If both

the original and compressed models initially output 0.8, and the

perturbed input causes the output of the original model to increase

to 0.9 while the output of the compressed model decreases to 0.7,

the IOPC score becomes significantly low. This example illustrates

a case where the compressed model fails to accurately track the

mechanism of the original model. However, IOPC is not appropri-

ate for assessing local explanations. Requiring consistency under

perturbation is less meaningful since the local explanation needs

only to be faithful to the original model’s behavior on that specific

input.

Definition 13 (Structural Perturbation Consistency; SPC).

𝑆𝑃𝐶 = 𝑆𝑐𝑜𝑟𝑒

( ∑︁
(𝑙,𝑖, 𝑗 ) ∈S

(
𝛿M
𝑙, 𝑗
− 𝛿𝜇

𝑙,𝑖

)
2

∑︁
(𝑙,𝑖, 𝑗 ) ∈S

(
𝛿M
𝑙, 𝑗

)
2 + 𝜀

)
.

If SPC = 1, the compressed model perfectly tracks the changes

in hidden activation values of hidden layers in the original model

induced by input perturbations.S is identical to that in definition 11.

𝛿M
𝑙, 𝑗

and 𝛿
𝜇

𝑙,𝑖
is identical to that in definition 12.

We use perturbation-basedmetrics for IOPC and SPC, not deletion-

based metrics. Widely used deletion-based metrics such as MoRF,

ROAR, and 𝐹𝑖𝑑+/− may yield misleading results due to their ten-

dency to produce out-of-distribution (OOD) inputs when masking

important features. As Zheng et al. [38] point out, this OOD be-

havior can lead the original modelM to behave erratically, thus

corrupting fidelity measurements.

6 Experiments
We used three complementary datasets: Breast Cancer [31], HIGGS

[30], and California Housing.

This dataset selection reflects a deliberate balance across domain

diversity, data scale, class structure, and task type. The Breast Can-

cer dataset is a small-scale binary classification task (569 samples)

that can be effectively modeled using a MLP. As such, it serves

as a suitable benchmark for evaluating whether argument-based

explanations can accurately reflect a well-performing MLP. Califor-

nia Housing is a medium-difficulty regression task, allowing us to

assess whether the proposed approach generalizes beyond classi-

fication. In contrast, the HIGGS dataset, a large-scale multi-class

classification task with 581,000 samples, is known to be challenging

for MLPs. We believe that explanation methods should remain infor-

mative even when model performance is suboptimal, particularly

by offering insight into prediction failures. HIGGS thus provides a

valuable test case for such scenarios.

6.1 Global Explanation
Table 1 is global explanation experiments. In terms of IOF, OVCA

consistently achieved higher scores across all dataset-model combi-

nations. Notably, in the shallow Breast Cancer-S model (L1 H64),

IOF improved from 0.6486 to 0.9966—a remarkable 53.7 percentage

point increase. This result indicates that the linear system method

is more effective than the sum method used in prior studies.
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Table 1: Global explanation results at 80% compression on the Breast Cancer, HIGGS, and California Housing datasets for
model sizes S, M, and L (L: layers; H: hidden nodes). Δ(%): relative improvement ((Ours–Original)/Original×100). Gaussian noise
(p=0.05) applied for IOPC and SPC.

Dataset / Model Method IOF↑ ΔIOF(%) SF↑ ΔSF(%) IOPC(p=0.05)↑ ΔIOPC(%) SPC(p=0.05)↑ ΔSPC(%)

Breast Cancer
S (L1 H64) Original 0.6486 – 0.9947 – 0.6775 – 0.5801 –

Ours 0.9966 53.7↑ 0.9944 0.0 0.8160 20.4↑ 0.6196 6.8↑
M (L3 H128) Original 0.9280 – 0.9956 – 0.7498 – 0.6661 –

Ours 0.9997 7.7↑ 0.9965 0.1↑ 0.9420 25.6↑ 0.7003 5.1↑
L (L5 H256) Original 0.9884 – 0.9978 – 0.9235 – 0.7979 –

Ours 0.9998 1.2↑ 0.9979 0.0 0.9491 2.8↑ 0.8005 0.3↑
HIGGS

S (L3 H128) Original 0.8676 – 0.6615 – 0.5356 – 0.5387 –

Ours 0.8930 2.9↑ 0.6745 2.0↑ 0.5263 1.7↓ 0.5403 0.3↑
M (L5 H256) Original 0.8928 – 0.7234 – 0.5461 – 0.5648 –

Ours 0.9429 5.6↑ 0.7897 9.2↑ 0.6070 11.1↑ 0.6032 6.8↑
L (L7 H512) Original 0.9417 – 0.7726 – 0.6162 – 0.6153 –

Ours 0.9717 3.2↑ 0.8719 12.9↑ 0.6947 12.7↑ 0.6908 12.3↑
California

S (L2 H64) Original 0.8446 – 0.7973 – 0.5408 – 0.5561 –

Ours 0.9460 12.0↑ 0.8240 3.3↑ 0.5869 8.5↑ 0.5722 2.9↑
M (L3 H128) Original 0.8365 – 0.7873 – 0.5171 – 0.5295 –

Ours 0.9658 15.5↑ 0.8647 9.8↑ 0.6189 19.7↑ 0.5954 12.5↑
L (L7 H256) Original 0.9427 – 0.8555 – 0.6514 – 0.6344 –

Ours 0.9924 5.3↑ 0.9072 6.0↑ 0.9005 38.2↑ 0.8469 33.5↑

In terms of SF, the benefits of OVCA were more pronounced for

deeper networks. For instance, in HIGGS (L7 H512), SF increased

from 0.7726 to 0.8719 (+12.9%). Similarly, in California Housing (L3

H128), SF rose from 0.7873 to 0.8647 (+9.8%). These results suggest

that OVCA effectively mitigates error propagation between layers,

leading to better preservation of internal activation patterns. In the

breast cancer dataset, there is no difference between the previous

method and the proposed method. This may explain why structural

unfaithfulness-based SF does not effectively differentiate between

the methods.

In terms of SPC (p = 0.05), we evaluated them by injecting Gauss-

ian noise (𝑝 = 0.05). OVCA outperformed the original method

across datasets. The improvement was smaller for the Breast Can-

cer dataset compared to others. Nevertheless, OVCA structurally

mitigated information loss clearly. This indicates that SPC is more

discriminative compared to the previous SF results. However, as

SPC and SF measure inherently different aspects, assessing with

both metrics is important.

In terms of IOPC (p = 0.05), OVCA generally achieved higher per-

formance across most cases, exhibiting substantial improvements.

However, in the HIGGS-S, the performance is decreased. This result

highlights that performance improvements were inconsistent across

datasets, indicating potential limitations of the proposed perturba-

tion metrics. Nevertheless, these findings suggest that OVCA better

maintains alignment with the original model behavior compared

to the original method.

Figure 3 visualizes the layer-wise structure unfaithfulness for

HIGGS andCaliforniaHousing experiments.While the priormethod

leads to linearly increasing error with depth, OVCA keeps per-layer

errors suppressed below 0.01, resulting in a much flatter accumula-

tion curve. This supports the theoretical claim that repeating the

compress-align-transfer procedure at each layer enables immediate

error correction.
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Figure 3: Comparison of the layer-wise structural unfaithful-
ness between the proposed method and the orginal method.
(a) L7 H256 model in California Housing dataset. (b) L7 H512
model in HIGGS dataset.

Figure 4 shows changes in performance per compression ratio.

We set the compression ratio from 1% to 90%. The reason for this
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Figure 4: Experimental results for the L3 H128 model on the
California Housing dataset across compression rates from
1% to 90% for each metric. (a) IOF, (b) SF, (c) IOPC with a
Gaussian noise perturbation of 0.05, and (d) SPC with the
same perturbation.

is a vibration of performance values, and this makes interpreta-

tion difficult. The vibration of performance values occurs when the

compressed model does not have a mechanism like the original

model. The vibration of the prior method begins from about 70%

compression ratio. This means that the prior method fails to pre-

serve information of the original model from compression ratios

exceeding about 70%. Indeed, from compression ratios exceeding

90%, the vibration of performance values occurs in the proposed

method, resulting in cases where the performance value of the prior

method is higher than the proposed method. Apart from these spe-

cific interpretations, in terms of a general perspective, the proposed

method preserves performance as the compression ratio increases.

Table 2 presents ablation studies that assess the contribution of

each OVCA component. IOF and SF perform better without 𝜆, but

the difference is not significant. IOPC and SPC are much better with

𝜆, with Adaptive 𝜆 using singular value performing best. Interpret-

ing this in terms of bias and variance, we can see that the addition

of regularization increased the bias, resulting in a small drop in IOF

and SF, but decreased the variance, resulting in a large increase

in performance on perturbation-based metrics. Furthermore, ap-

plying strong or weak regularization yields limited improvement,

while adjusting the regularization strength per layer based on the

singular values of the activation outputs yields significantly better

performance. The only difference between using the sum method

and using the linear system is recalculating the activation. In this

case, the prior method performed slightly better.

Table 2: Ablation study of L7 H256 model on the California
Housing dataset for global explanations (mean ± standard
deviation across five random seeds).

Variant IOF SF

Full 0.9925 ± 0.0003 0.9094 ± 0.0022
w/o Adaptive 𝜆 0.9927 ± 0.0002 0.9095 ± 0.0022
w/o 𝜆 0.9928 ± 0.0002 0.9095 ± 0.0022
w/o Alignment 0.9396 ± 0.0136 0.8551 ± 0.0065
Original 0.9437 ± 0.0069 0.8587 ± 0.0065

Variant IOPC SPC

Full 0.9088 ± 0.0149 0.8564 ± 0.0138
w/o Adaptive 𝜆 0.8881 ± 0.0065 0.8557 ± 0.0133
w/o 𝜆 0.8357 ± 0.0086 0.8545 ± 0.0129
w/o Alignment 0.6394 ± 0.0383 0.6249 ± 0.0326
Original 0.6521 ± 0.0175 0.6333 ± 0.0237

6.2 Local Explanation
Table 3 is the performance evaluation of our proposed method for

local explanations. In previous work, data 𝑥 was sampled to create

Δ′ and compressed using distance-based weighting. We compare

our proposed method with prior methods in two cases, one with no

weighting and the other with no sampling at all. When weighted,

our proposed method consistently performs better. Even without

weighting, the performance numbers are the samewith and without

weighting. This is due to rounding to the nearest 5 decimal places for

the change in performance with and without weighting. Although

the difference is too minimal, weighting performed slightly better.

Surprisingly, the prior method outperformed the proposed one

when no sampling is done.

6.3 Time Usage
Table 4 measures the execution time of the existing and proposed

methods. In global explanations, the time was measured using the

dataset Δ used to train the model, and for local explanations, the

time was measured by sampling data 𝑥 and creating 100 dataset Δ′.
Compared to the original method, the runtime of proposed method

increased by up to 19% for global explanations. Local explanation

increased by up to 8%. Since the clustering operation is the bottle-

neck in both methods, the time complexity of both methods is the

same in big-O notation. However, the recalculation of the activation

value adds 𝑂 (𝑁𝑙 |𝑉 𝜇

𝑙
|) to the execution time.

7 Conclusion
In this paper, we proposed a novel compression method (OVCA)

using online activation values. To address shortcomings of prior

evaluation metrics (input-output unfaithfulness, structural unfaith-

fulness), we introduced 2 metrics (IOF, SF) robust across different

model sizes and batch sizes, and 2 metrics (IOPC, SPC) enabling

more rigorous assessments.
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Table 3: Local explanation results at 80% compression on Breast Cancer, HIGGS, and California Housing datasets for model
sizes S, M, and L (L: layers; H: hidden nodes). "w/o W": clustering without distance-based weighting; "w/o S": clustering and
aggregation on a single input only. Δ(%): ((Ours–Original)/Original×100).

Dataset / Model Method IO ΔIO (%) w/o W ΔIO (%) w/o S ΔIO (%) SF ΔSF (%) w/o W ΔST (%) w/o S ΔSF (%)

Breast Cancer
S (L1 H64) Original 0.9997 – 0.9997 – 0.9998 – 0.9963 – 0.9963 – 0.9965 –

Ours 0.9999 0.02↑ 0.9999 0.02↑ 0.9997 0.00 0.9963 0.00 0.9963 0.00 0.9962 0.02↓
M (L3 H128) Original 1.0000 – 1.0000 – 0.9999 – 0.9965 – 0.9965 – 0.9962 –

Ours 1.0000 0.00 1.0000 0.00 0.9999 0.00 0.9967 0.02↑ 0.9967 0.02↑ 0.9961 0.01↓
L (L5 H256) Original 1.0000 – 1.0000 – 0.9999 – 0.9969 – 0.9969 – 0.9964 –

Ours 1.0000 0.00 1.0000 0.00 0.9998 0.01↓ 0.9972 0.02↑ 0.9972 0.02↑ 0.9960 0.03↓

HIGGS
S (L3 H128) Original 0.9944 – 0.9944 – 0.9856 – 0.9772 – 0.9772 – 0.9678 –

Ours 0.9987 0.42↑ 0.9987 0.42↑ 0.9800 0.57↓ 0.9874 1.03↑ 0.9874 1.03↑ 0.9533 1.49↓
M (L5 H256) Original 0.9966 – 0.9966 – 0.9868 – 0.9841 – 0.9841 – 0.9628 –

Ours 1.0000 0.33↑ 1.0000 0.33↑ 0.9839 0.29↓ 0.9934 0.94↑ 0.9934 0.94↑ 0.9485 1.48↓
L (L7 H512) Original 0.9973 – 0.9973 – 0.9851 – 0.9864 – 0.9864 – 0.9566 –

Ours 1.0000 0.26↑ 1.0000 0.26↑ 0.9653 2.01↓ 0.9953 0.90↑ 0.9953 0.90↑ 0.9157 4.27↓

California
S (L2 H64) Original 0.9570 – 0.9570 – 0.9501 – 0.9787 – 0.9787 – 0.9663 –

Ours 0.9915 3.60↑ 0.9915 3.60↑ 0.9336 1.74↓ 0.9807 0.21↑ 0.9807 0.21↑ 0.9621 0.43↓
M (L3 H128) Original 0.9970 – 0.9970 – 0.9871 – 0.9851 – 0.9851 – 0.9700 –

Ours 0.9996 0.26↑ 0.9996 0.26↑ 0.9858 0.12↓ 0.9899 0.48↑ 0.9899 0.48↑ 0.9645 0.57↓
L (L7 H256) Original 0.9993 – 0.9994 – 0.9922 – 0.9947 – 0.9950 – 0.9810 –

Ours 1.0000 0.06↑ 1.0000 0.06↑ 0.9899 0.23↓ 0.9964 0.16↑ 0.9964 0.14↑ 0.9724 0.87↓

Table 4: Comparison of execution times between the original
and proposed method (mean ± std, unit: ms). Experimental
setup includes fixed threads/cores, warm-up runs, and ran-
domized execution order (15 iterations).

Global Explanations

Original (ms) OVCA (ms) relative

cancer 4.0 ± 0.2 4.3 ± 0.2 1.08

housing 476.1 ± 10.6 566.8 ± 28.2 1.19

HIGGS 19 390.8 ± 116.1 20 325.5 ± 93.7 1.05

Local Explanations

Original (ms) OVCA (ms) relative

cancer 3.55 ± 0.4 3.57 ± 0.1 1.00

housing 18.6 ± 1.2 19.2 ± 0.5 1.03

HIGGS 18.0 ± 0.5 19.5 ± 0.5 1.08

Overall, OVCA outperformed the original method across all

four proposed metrics. In global explanation, performance improve-

ments of up to 53.7% in IOF, 12.9% in SF, 38.2% in IOPC and 33.5%

in SPC were achieved, and Local explanation saw improvements

of up to 3.6% in IOF and 1.03% in SF, clearly demonstrating that

our proposed method enhances the fidelity of compressed models

compared to existing methods. This suggests that it is possible to

generate argumentative explanations that are faithful to existing

models with lower cognitive complexity. Moreover, the processing

time remained below 20%, suggesting that the proposed approach

can reliably provide argumentative XAI in the target application

domain.

A limitation of this study is that the effectiveness of the proposed

method has been only validated exclusively with tabular data. Re-

cent work, such as ProtoArgNet[4], based on the ProtoPNet[8],

demonstrates that argumentative Explanation is feasible for image

classification tasks as well. Therefore, future research should val-

idate our proposed method across diverse tasks, including image

classification tasks like ProtoArgNet. Also, in the local explanations

experiment, the performance of compression without sampling,

i.e., with only a single input, was rather poor. The reason is that

the size of the matrix is too small to preserve the information of

the original model with a linear system. Solving this problem to

improve performance without local sampling is key work to speed

up explanation generation in the future. Additionally, since IOPC

and SPC are metrics not applicable for local explanation, there re-

mains a shortage of suitable metrics for evaluating compression

methods in local explanation. Future research should strive to in-

troduce more metrics tailored specifically for argumentative XAI.

We hope that this work lays foundational groundwork for these

efforts and broadly contributes to the advancement and growth of

the argumentative XAI ecosystem.

8 Generative AI Disclosure
We did not use any generative AI tools beyond standard spelling,

grammar checking functions that are exempt from disclosure under

the ACM Authorship Policy.
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