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Abstract

Argumentative explainable artificial intelligence employs argumen-
tation theory to explain the mechanisms of machine learning. Pre-
vious approaches for explaining deep learning models collectively
compressed layers via clustering. However, this resulted in accumu-
lated information loss across layers, thereby degrading the fidelity
of explanations. We propose online activation value-aware clus-
tering and aggregation, a compression algorithm that preserves
the inference structure of the original neural network with greater
fidelity. The proposed method sequentially compresses each layer,
immediately recalculates activation values following compression,
and rectifies inter-layer information loss using a singular-value-
scaled ridge alignment approach. To evaluate the effectiveness of the
proposed method, we introduce four novel quantitative metrics. In-
put-output fidelity and structural fidelity measure how accurately
the compressed model preserves the original model predictions
and internal activations. Input—output perturbation consistency
and structural perturbation consistency assess the similarity of the
changes induced by Gaussian-perturbed input data. Experiments
on three benchmark datasets (Breast Cancer, California Housing,
and HIGGS) demonstrate that our method achieves performance
improvements ranging from 12.9% to 53.7% across the four met-
rics, demonstrating significantly higher explanation fidelity than
existing approaches.

CCS Concepts

« Computing methodologies — Semantic networks; Causal
reasoning and diagnostics.
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1 Introduction

Explainable Artificial Intelligence (XAI) aims to make the decision-
making processes of deep neural networks interpretable to hu-
mans [12, 14]. This is particularly important in high-stakes domains
such as healthcare [25], finance [11], and stock prices [13], where
model decisions must be understood and justified [7, 27]. To achieve
this, various approaches, such as intrinsic methods [2, 17, 33] and
post hoc methods [5, 20, 26, 29, 32], have been proposed. However,
these approaches often fail to accurately capture the underlying
mechanisms of the original models [3].

Argumentative XAI provides more intuitive and clear explana-
tions than traditional XAI methods by mapping a model’s internal
reasoning process onto argumentation frameworks [9]. In particular,
Potyka [23] theoretically demonstrates that Multi-Layer Percep-
trons (MLPs) can be interpreted as Quantitative Bipolar Argumen-
tation Frameworks (QBAFs), which quantitatively represent the
relationships such as attack and support among arguments [6, 24].

Based on this theoretical foundation, SpArX [3] proposes a pro-
totype model enabling argumentative explanations from tabular
data using MLPs, while ProtoArgNet[4] introduced a model based
on Sparse MLPs (SMLPs) to produce argumentative explanations
from image data. However, prior studies have not adequately ex-
plored how to compress reasoning mechanisms while preserving
them faithfully in argumentative explanations. Considering that
high-quality explanations must simultaneously exhibit high fidelity
to the original model and low cognitive complexity to the com-
pressed model, a fundamental trade-off exists between compression
ratio and fidelity [3]. Improving compression fidelity and efficiency
has the potential to reduce cognitive complexity, making this re-
search essential for advancing argumentative explanations towards
practical applications.

We propose Online Activation Value-aware Clustering and Ag-
gregation (OVCA), a novel compression method for building faithful
argumentative explanations. Instead of simplifying all layers in one
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shot (which do not consider cumulative error [18]), our method
processes each layer sequentially and performs an online update of
activations after each compression. The online activation values is
not only used as input for the subsequent layer but also employed
to solve a linear equation involving activation values of the original
model, whose solution is then multiplied by the weight matrix.
This procedure minimizes information loss and reduces cumulative
error; additionally, singular values are incorporated as a form of
stabilization to address cases where the linear equation does not
yield a direct solution.

There is a lack of reliable metrics to accurately evaluate how
faithfully these compression methods explain the original model.
SpArX [3] introduces two metrics, input-output and structural un-
faithfulness. If these two values of metrics are zero, the compressed
model has the same mechanism as the original model. However,
these two metrics are sensitive to external factors. For instance,
increasing the model or batch size leads to corresponding increases
in these metrics. Because of this increase, it is impossible to com-
pare across models or datasets. Furthermore, these two metrics
lack discrimination power when comparing across compression
methods. We observed that differences in metrics value emerged
starting from the sixth decimal place. It could be argued that exist-
ing methods sufficiently approximate the mechanism of the original
model, resulting in metrics approaching zero. Nevertheless, this
phenomenon can be observed when evaluations are conducted with
small model or batch sizes, and the variation in metric performance
is also minimal under these conditions.

To overcome the limitations of the current metrics, we propose
four novel evaluation metrics, designed to address the limitations of
existing input-output and structural unfaithfulness measures. Input-
Output Fidelity (IOF) and Structural Fidelity (SF) quantitatively eval-
uate how closely the outputs or activation values of the compressed
model align with those of the original model. Input-Output Pertur-
bation Consistency (IOPC) and Structural Perturbation Consistency
(SPC) assess fidelity more rigorously by quantitatively measuring
how similarly, in both magnitude and direction, the outputs or ac-
tivation values of the compressed model respond to input feature
perturbations induced by Gaussian noise, compared to those of the
original model.

IOF and SF can be used in global explanations and local explana-
tions. IOPC and SPC can be used in global explanations, but not in
local explanations. The reason is written in definition 12. Global
explanations are methods that observe the mechanism through
which a model generally makes predictions based on specific crite-
ria and principles when given large amounts of data. In contrast,
local explanations analyze the mechanism specifically to clarify
why a particular prediction was made for an individual data in-
stance. In other words, global explanations help in understanding
the overall behavior of a model, while local explanations enhance
detailed understanding and trust regarding individual cases. Our
contributions are as follows:

o By proposing a novel compression technique, we minimize
performance degradation caused by cumulative error and
effectively preserve high fidelity even at higher compression
ratios, thus contributing to stable and reliable argumentative
explanations suitable for practical applications.
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e We propose four quantitative metrics (IOF, SF, IOPC, and
SPC) to systematically evaluate both global and local faith-
fulness of compressed models. These metrics provide a stan-
dardized framework for objectively validating and compar-
ing the performance of various compression methodologies
in future research.

2 Related Work
2.1 Post-hoc Explanation Methods

Post-hoc XAI aims to interpret models, already trained, by analyz-
ing their inputs, outputs, and internal behavior without modifying
the model itself. Popular methods include feature attribution tech-
niques such as LIME [26] and SHAP [20], which highlight influential
input features by perturbing input samples or approximating local
gradients. Although these methods are widely adopted for their
ease of use, they often do not capture the full reasoning process of
the model and can be brittle under adversarial or out-of-distribution
perturbations [34]. Other post hoc approaches involve surrogate
modeling, such as training simpler models (e.g., decision trees) to
mimic the predictions of complex models. However, these surro-
gates rarely reflect the internal structure and can lead to misleading
conclusions [19]. Our method can be viewed as a structured sur-
rogate that retains internal semantics and interpretability through
principled layerwise aggregation.

2.2 Argumentative XAI

Argumentative explanations aim to transform neural networks into
QBAFs [9, 23]. Here, neurons correspond to arguments, and edges
between neurons represent relations such as attack or support
among arguments. SpArx [3] proposes explaining in tabular data to
transform MLPs to QBAFs. ProtoArgNet proposes explaining in im-
age data to transform SMLPs to QBAFs. Recent works discuss how
QBAFs explain specific domains in deep learning. On the other side,
our work focuses on improving and discussing the compression
process, which represents the common underlying logic shared by
these recent works.

2.3 Model Compression

Classical compression methods include pruning [15, 18], quanti-
zation [1], and knowledge distillation (KD) [16, 21, 21, 36]. These
methods aim to reduce model size and inference cost. However,
these methods generally ignore mechanism preservation [3]. Clas-
sical compression methods prioritize prediction accuracy. We need
compression methods that prioritize prediction similarity. For an
extreme example, if the accuracy of the original model is 70%, the
classical compression methods consider compression successful if
the accuracy improves beyond 70%. In contrast, our desired com-
pression method does not aim to surpass this 70% accuracy but
rather aims to closely match the original prediction behavior.

2.4 Activation Value-aware SVD

Some works compress the model with Activation Value-aware Sin-
gular Value Decomposition (ASVD) [28, 35]. These works demon-
strate that the compression with activation distribution is possible
and effective. Singular Value Decomposition (SVD) reduces the
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number of parameters and computational complexity by approx-
imating a high-rank matrix with a low-rank representation [10],
such as W ~ US VT, In our approach, we use only the singular
values without computing the matrices U and V. Previous aggrega-
tion methods sum all weights directly. In contrast, our aggregation
method derives a projection matrix that maps original weights onto
compressed weights.

2.5 Fidelity Metrics in XAI

Faithfulness metrics are used to assess how well an explanation
reflects the original model. While many XAI works rely on deletion-
based metrics such as MoRF or ROAR, these can produce misleading
results under distribution shift or input corruption [38]. Moreover,
such methods assume monotonicity of importance scores, which
may not hold in nonlinear models [34]. Alternatives such as sen-
sitivity analysis and feature perturbation have been proposed to
mitigate these issues. Inspired by recent advances in robust fidelity
estimation [37], our metrics IOPC and SPC emphasize perturbation-
aware fidelity by measuring response similarity under input noise.
These metrics provide more reliable estimates of model-explanation
alignment, especially for evaluating compressed models across local

and global behaviors.

3 Preliminaries
Definition 1, 2, 4, 5, 6, 7 are from SpArX [3].

Definition 1 (Multi-Layer Perceptron (MLP)). An MLP M is a tuple
(V,E,B,W, ¢). (V,E) is a directed graph. V = &Jf:ol V; consists of
(ordered) layers of neurons; for 0 < I < d+1,V; = {vy4,...,07 v}
is the set of neurons in layer [. We call V; the input layer, V.,
the output layer, and V; (for 1 < [ < d) the [-th hidden layer; d
is the depth of the MLP. E C U;izo(Vl X Vi41) is a set of edges
between adjacent layers; if E = Uf:O(Vl X Vi41), then the MLP is
called fully connected. B = {bl, e, bd+1} is a set of bias vectors,
where for1 <l <d+1,b e RVl w = {WO,...,Wd} is a set of
weight matrices, where for 1 <1 < d+1, wl e R'V’“'X'V", such
that le,l. = 0 when (v4qj,07;) ¢ E. ¢ : R —> R is an activation
function.

Definition 2 (Quantitative Argumentation Framework (QBAF)).
A QBAF with domain D C R is a tuple (A, E, B, w) that consists of
e A={ay,..., a|A‘} is a set of arguments;
o EC A XA isaset of directed edges;
e B: A — D is a base score;
o w: AXA — Risa weight function.
Edges with negative/positive weights are called attack and support
edges, denoted by Att/Sup, respectively.

To interpret the arguments in an edge weighted QBAF, we con-
sidered a modular semantics based on the relationship between
QBAFs and MLPs noted earlier to interpret the arguments in an
edge weighted QBAF [23].

Definition 3 (Clustering of MLP).
o C= {Cl,CZ,. ..,Cd}

e Cr=A{cp1.c2, 50100}
o= {vl/,‘]’.(ll <i< |VIM|,zabel(ol/"]4) =i}
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Given MLP M and compression ratio y, C is the set of clustering
results of all hidden layers. C; is the clustering result of /th hidden
layer, and |C;| = max(1, |_y |VIM|J) = |Vl”|. The label function as-
signs each node to the corresponding cluster label. For example, if
we cluster VM = {1,2,5,6,8,9, 10,13, 14,15} with y = 0.4 and clus-
tering results are C; = {{1, 2}, {5,6},{8,9,10},{13, 14, 15}}, then
label(vl{\'lt) =1, label(vlj}g) = 1. Each ¢ ; is a non-empty set.

Definition 4 (Parameters of Clustered MLP). Given an MLP M, let
(VM EM) be the graphical structure of the corresponding classical
MLP pi. Then for the cluster and edge aggregation functions Aggb
and Agg?, respectively, p is

(Vﬂ,Eﬂ,B”,VV”,Q)

with parameters B¥, W as follows:

e For every cluster-neuron vc € V¥, the bias in B¥ of vc is
Aggh(0);

e Forevery edge (vc1,0c2) € E¥, the weight in WH of the edge
is Agg®((C1,C2)).

Definition 5 (Graphical Structure of Clustered MLP). See Figure 1;
Given an MLP M and a clustering C = w;lec, of M, the graphical
structure of the corresponding clustered MLP y is a directed graph
(VH, EF) with:

d+1
W H
=y

1=0

Comprising (ordered) layers of cluster-neurons such that:

e The input layer Vol’l consists of a singleton cluster-neuron
0{0,i) for every input neuron v; € Vp.

o The I-th hidden layer of y (for 0 < I < d + 1) consists of a
cluster-neurons c;.

o The output layer V:H consists of a singleton cluster-neuron
V{d+1,j} for every output neuron Ud+1,j € Vst

_1d (yH ey vH
o B =UL (V) XV,

Definition 6 (Structural Unfaithfulness). The local structural un-
faithfulness of p to M with respect to input x and dataset A is:

d+1Cq|

.[:SM = Z Tx! x Z Z Z (OZ\;((x') - Oii(x'))z.

x' €N I=1 j=1ui€cyLj

The global structural unfaithfulness is defined analogously by re-
moving the similarity terms my .

Definition 7 (Cognitive Complexity).

aw=[] WL

0<l<d+1

A larger Q(u) suggests a more complex (hence less interpretable)
model. Therefore, balancing fidelity (IOF, SF, IOPC, SPC) against
cognitive complexity Q(y) is thus crucial for creating explanations
that are both accurate and comprehensible.
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Figure 1: The positive and negative weight relationships be-
tween neuron clusters (C2—-C12) and the output node (Oy) as
an argumentation graph, after compressing a MLP trained
on the Breast Cancer dataset by 80% with the proposed OVCA
algorithm.

4 Proposed Method

Figure 2 is an overview of our method. We consider activation value
from both offline and online perspectives. In a scenario where layer
1 is compressed and layer 2 needs to be compressed subsequently,
clustering utilizes activation values obtained from layer 2. However,
the activation values obtained from the original model differ from
those obtained from a model where layer 1 is compressed. We call
the activation value obtained from the original model as offline
activation value and the recalculated activation value as online
activation values. A key difference between offline and online acti-
vation values is the consideration of clustering information from
the previous layer. We perform clustering and aggregation with
online activation values, thus, we minimize the information loss
and accumulated error.

Algorithm 1 is a four-step pseudo code for local explanation.
The reason for sampling A’ is that it is difficult for the results
of clustering and aggregation to be stable with only one piece of
data [3]. The PERTURB function generates data by adding some
noise to the data x. Let pi be a weight variable that is based on the
distance between x and x”. We use this pi to cluster. Step 2 is the
clustering based on the weights pi and the activation values AM
Steps 3 and 4 are the aggregation process based on the clustering
results. We used k-means as our clustering algorithm. Steps 3 and
4 are the aggregation process based on the clustering results. In
particular, the MERGENODES function in step 3 is equivalent to (i),
(ii), and step 4 is (iii) in definition 9. Global explanation first uses
the dataset A instead of the data x(. Therefore, it doesn’t calculate
« and doesn’t utilize pi during clustering and aggregation. Other
than that, the behavior is the same.

Definition 8 (Global Aggregation Functions).
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(i) Bias aggregation
1
Aggy(Cr) = (b)) 1b), = P D, bMeiec)
Li U[/};!GCIJ'

(ii) Incoming-weight aggregation

e H — (H H _ _1 -1
Aggh, (VO = A e = D) WG
UlykECI’j
H H i
Ul—l,i € Vl—l’cl’] € Cl}

(iii) Outgoing-weight aggregation

Myy — (M Ho _ywl
Agggut((cl! ‘/l+1)) - {el,i,j | el,i,j - W(],) ) Q(Z,i)’
c; €Cp, Ul/-\i-/(l,j € Vlﬁ—vl(}

The aggregation function for edges operates in two stages. First per-
forming Agg?, function, and then Agg,,, function. After processing
Agg?,, weights between vI=1and V! are compressed, enabling the
recalculation of activation values. A?l € RIC!I denote the recalcu-

M
lated online activation values. AM € RIV/"| denote the original
model’s activation values. The main idea is to solve a linear system
between A‘;l and AIM to preserve the original’s information in a

compressed state. 0 = (A‘;lTA‘;I) - A‘;’T AZM denotes the solution to
the linear system.

However, if A;’ is rank-deficient, the linear system may have no
solution (ill-posed) or may not have a unique solution. To maintain
the full-rank condition of the online activation values, we add a reg-
ularization matrix. The regularization matrix is AI. A is the product
of a hyperparameter and the maximum singular value. Addition-
ally, this method prevents the compressed weights or model from
becoming ill-conditioned which amplify changes in the output in
response to small changes in the input.

THEOREM 1. The linear system (AFT AH + AI)6 = A‘;’T AlM has a
unique solution 0.

PRrROOF. Suppose A > 0. Let A# be the compressed activation
value matrix and AM be the original activation value matrix. We
show that the solution of the linear system always exists and is
unique.

For any vector x, the following holds:

xT(AFT AF)x = (AFx) T (AFx) = [|Ax]|2 = o.
Thus, the matrix A¥T A is positive semi-definite, and all eigen
values al.z of AT AH satisfy:
ol > 0.

Since A > 0, the eigenvalues of the matrix AI are all equal to 4,
which are strictly positive. Therefore, the eigen values of the matrix
AFT AF + A are:

O'iz +A>0.

Hence, the matrix A¥T A¥ + Al is positive definite, implying that
for any x # 0,
xT (AFTAH + AD)x > 0.
This means that the matrix (A*T A* + AI) is full rank and invert-
ible (i.e., (A¥T A# + AI)~! always exists).
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Figure 2: An overview of the proposed method; (a) After determining how to combine nodes by clustering, our method extracts
activation values through the forward of MLP, and compresses layer [ = 1 by 50% through Agg{ and Agg;, ,.(See Definition 8);
(b) Prior method use activation values from MLP models for compression, which breaks the connectivity between layers and
causes high information loss. (The previous method does not compress with method (a)); (c) The proposed method extracts and
clusters the activation values of the compressed model from [ = 2 to [ = 1 instead of the original model at [ = 2.

Therefore, the linear equation
(AFTAF 4 AD)x = AFT AM

always has a unique solution.

If all activation values in a layer are negative, then A can be less
than or equal to zero. However, this scenario is uncommon and re-
alistically does not occur. Nevertheless, to mitigate these exception
cases, it is possible to create a ridge regression matrix by squaring
the singular values or to create a lasso regression matrix by taking
the absolute values. However, we did not experiment with ridge or
lasso methods, since ReLU activation does not produce negative
values, rendering these regularization approaches meaningless. De-
spite this approach, it is impossible to compute if the activation
values of a layer are all zero. However, this is an unusual result that
must not occur during the training process, regardless of whether
the model is compressed or not, so it is not considered a typical
case and is not considered in this study.

Definition 9 (Local Aggregation Functions). Fix an input x and
its perturbed neighborhood A" = {x1, ..., x;,} with weights 7,» =
exp(~[lx’ — x[|*/a?).
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(i) Bias aggregation

Z b scri € Cr}

EC[,

Aggy,(C)) = {bl

(ii) Incoming-weight aggregation

Aggin (V1 ,C1) = {ell; | el —|’C’l"ﬂ| > owi,
JV oppeer;
I eVI pej € G
(iif) Outgomg-weight aggregation
Aggou((Cr ,H)) (e 1 =W e,
cLi € Cr v l+1] € Vlﬁ-vll}

5 Evaluation Metric

We measure how the compressed model p closely reproduces the
original model M using four metrics. All four metrics use the
following function: score(x) = 13 +x, where higher values indicate
greater alignment with the original model. ¢ > 0 prevents division
by zero.
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Algorithm 1 OVCA for local explanation

Require: trained MLP M with layers V, preserve ratio y € (0, 1],
neighborhood size N, noise scale oyjse, kernel width o, and
ridge A

Ensure: compressed model y

Lpe—M

2: xp < target input

(1) Local sample generation
3. A’ « PERTURB(xX0, N, Opoise)
4: append xp to A’

5. 7 — exp(—l|A” - xo]12/0?)

6: for/=1toddo

(2) n-weighted clustering

7 AM oM@

8 1G] < max(1, Ly [Vil])

9 C; < CLUSTERING(Ay, |G|, sample_weight = 1)
(3) Merge neurons

> initial copy

> iterate hidden layers

10: (Wl“, b;’) — MERGENODES(W?, bl,Cl, )

1 Replace layer [ of 1 with (WIH )

(4) Ridge Alignment

12: if [ < d then

13: Al — o)

14: 0= (ATAr+ 1) AT AM

15: Wi gwi+ > update layer [+1 in p
16: end if

17: end for

18: return

Definition 10 (Input-Output Fidelity; IOF).

M _H 2
IOF = Score( (Odﬂ(ﬁ) 0g:1(A)
(Od+1 (A)?+e

If IOF = 1, the compressed model perfectly reproduces the output
probabilities of the original model. This metric is similar to input-
output unfaithfulness [3].

Definition 11 (Structural Fidelity; SF).
M 2
>, (M@ -0 ()

(Li,j)eS
D, M@ +e
(Li,j)eS
If SF = 1, the compressed model perfectly reproduces the hidden
activation values of the hidden layers in the original model. S =
{(l, i,j) | C; €C, ci € Cy, Z)l/’\]/.l S cl,i}

SF = Score

Definition 12 (Input-Output Perturbation Consistency; IOPC).
Given a base input x and a perturbed input x” = x + §, let
( sM (5”)2 )
(M2 4 ¢
If IOPC = 1, the compressed model perfectly tracks the changes
in output probabilities of the original model induced by input per-

IOPC = Score(

turbations [22, 34]. M = Oxl (A) - Og/l\fl(A’) be the change of
ouptut of the original model. §# := OSH(A) - OZH(A’) be the
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change of output of the compressed model. Achieving a high score
on the IOPC metric requires accurately matching both the direction
and magnitude of output changes in the original model. If both
the original and compressed models initially output 0.8, and the
perturbed input causes the output of the original model to increase
to 0.9 while the output of the compressed model decreases to 0.7,
the IOPC score becomes significantly low. This example illustrates
a case where the compressed model fails to accurately track the
mechanism of the original model. However, IOPC is not appropri-
ate for assessing local explanations. Requiring consistency under
perturbation is less meaningful since the local explanation needs
only to be faithful to the original model’s behavior on that specific
input.

Definition 13 (Structural Perturbation Consistency; SPC).

Z (51/\;( - 5;?1)2
(Li,j)eS

D, M)+ )
(Li,j)eS
If SPC = 1, the compressed model perfectly tracks the changes
in hidden activation values of hidden layers in the original model
induced by input perturbations. & is identical to that in definition 11.
51/\]/.( and (5;' ; is identical to that in definition 12.

“We use f)erturbation—based metrics for IOPC and SPC, not deletion-
based metrics. Widely used deletion-based metrics such as MoRF,
ROAR, and Fid,;_ may yield misleading results due to their ten-
dency to produce out-of-distribution (OOD) inputs when masking
important features. As Zheng et al. [38] point out, this OOD be-
havior can lead the original model M to behave erratically, thus
corrupting fidelity measurements.

SPC = Score(

6 Experiments

We used three complementary datasets: Breast Cancer [31], HIGGS
[30], and California Housing.

This dataset selection reflects a deliberate balance across domain
diversity, data scale, class structure, and task type. The Breast Can-
cer dataset is a small-scale binary classification task (569 samples)
that can be effectively modeled using a MLP. As such, it serves
as a suitable benchmark for evaluating whether argument-based
explanations can accurately reflect a well-performing MLP. Califor-
nia Housing is a medium-difficulty regression task, allowing us to
assess whether the proposed approach generalizes beyond classi-
fication. In contrast, the HIGGS dataset, a large-scale multi-class
classification task with 581,000 samples, is known to be challenging
for MLPs. We believe that explanation methods should remain infor-
mative even when model performance is suboptimal, particularly
by offering insight into prediction failures. HIGGS thus provides a
valuable test case for such scenarios.

6.1 Global Explanation

Table 1 is global explanation experiments. In terms of IOF, OVCA
consistently achieved higher scores across all dataset-model combi-
nations. Notably, in the shallow Breast Cancer-S model (L1 H64),
IOF improved from 0.6486 to 0.9966—a remarkable 53.7 percentage
point increase. This result indicates that the linear system method
is more effective than the sum method used in prior studies.
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Table 1: Global explanation results at 80% compression on the Breast Cancer, HIGGS, and California Housing datasets for
model sizes S, M, and L (L: layers; H: hidden nodes). A(%): relative improvement ((Ours-Original)/Originalx100). Gaussian noise

(p=0.05) applied for IOPC and SPC.

Dataset / Model Method IOFT  AIOF(%) SFT ASF(%) IOPC(p=0.05)T AIOPC(%) SPC(p=0.05)T ASPC(%)
Breast Cancer
S (L1 Ho64) Original  0.6486 - 0.9947 - 0.6775 - 0.5801 -
Ours 0.9966 53.77 0.9944 0.0 0.8160 20.47 0.6196 6.87
M (L3 H1238) Original  0.9280 - 0.9956 - 0.7498 - 0.6661 -
Ours 0.9997 7.77 0.9965 0.17 0.9420 25.67 0.7003 5.17
L (L5 H256) Original  0.9884 - 0.9978 - 0.9235 - 0.7979 -
Ours 0.9998 1.27 0.9979 0.0 0.9491 2.87 0.8005 0.37
HIGGS
S (L3 H128) Original  0.8676 - 0.6615 - 0.5356 - 0.5387 -
Ours 0.8930 2.97 0.6745 2.0T 0.5263 1.7] 0.5403 0.37
M (L5 H256) Original  0.8928 - 0.7234 - 0.5461 - 0.5648 -
Ours 0.9429 5.67 0.7897 9.27 0.6070 11.17 0.6032 6.8T
L (L7 H512) Original  0.9417 - 0.7726 - 0.6162 - 0.6153 -
Ours 0.9717 3.27 0.8719 12.97 0.6947 12.77 0.6908 12.37
California
S (L2 Ho64) Original  0.8446 - 0.7973 - 0.5408 - 0.5561 -
Ours 0.9460 12.07 0.8240 3.37 0.5869 8.5T 0.5722 2.97
M (L3 H1238) Original  0.8365 - 0.7873 - 0.5171 - 0.5295 -
Ours 0.9658 15.57 0.8647 9.87 0.6189 19.77 0.5954 12.57
L (L7 H256) Original  0.9427 - 0.8555 - 0.6514 - 0.6344 -
Ours 09924 537 09072 607 0.9005 38.21 0.8469 33.57

In terms of SF, the benefits of OVCA were more pronounced for
deeper networks. For instance, in HIGGS (L7 H512), SF increased
from 0.7726 to 0.8719 (+12.9%). Similarly, in California Housing (L3
H128), SF rose from 0.7873 to 0.8647 (+9.8%). These results suggest
that OVCA effectively mitigates error propagation between layers,
leading to better preservation of internal activation patterns. In the
breast cancer dataset, there is no difference between the previous
method and the proposed method. This may explain why structural
unfaithfulness-based SF does not effectively differentiate between
the methods.

In terms of SPC (p = 0.05), we evaluated them by injecting Gauss-
ian noise (p = 0.05). OVCA outperformed the original method
across datasets. The improvement was smaller for the Breast Can-
cer dataset compared to others. Nevertheless, OVCA structurally
mitigated information loss clearly. This indicates that SPC is more
discriminative compared to the previous SF results. However, as
SPC and SF measure inherently different aspects, assessing with
both metrics is important.

In terms of IOPC (p = 0.05), OVCA generally achieved higher per-
formance across most cases, exhibiting substantial improvements.
However, in the HIGGS-S, the performance is decreased. This result
highlights that performance improvements were inconsistent across
datasets, indicating potential limitations of the proposed perturba-
tion metrics. Nevertheless, these findings suggest that OVCA better
maintains alignment with the original model behavior compared
to the original method.
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Figure 3 visualizes the layer-wise structure unfaithfulness for
HIGGS and California Housing experiments. While the prior method
leads to linearly increasing error with depth, OVCA keeps per-layer
errors suppressed below 0.01, resulting in a much flatter accumula-
tion curve. This supports the theoretical claim that repeating the
compress-align-transfer procedure at each layer enables immediate
error correction.
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Figure 3: Comparison of the layer-wise structural unfaithful-
ness between the proposed method and the orginal method.
(a) L7 H256 model in California Housing dataset. (b) L7 H512
model in HIGGS dataset.

Figure 4 shows changes in performance per compression ratio.
We set the compression ratio from 1% to 90%. The reason for this
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Figure 4: Experimental results for the L3 H128 model on the
California Housing dataset across compression rates from
1% to 90% for each metric. (a) IOF, (b) SF, (c) IOPC with a
Gaussian noise perturbation of 0.05, and (d) SPC with the
same perturbation.

is a vibration of performance values, and this makes interpreta-
tion difficult. The vibration of performance values occurs when the
compressed model does not have a mechanism like the original
model. The vibration of the prior method begins from about 70%
compression ratio. This means that the prior method fails to pre-
serve information of the original model from compression ratios
exceeding about 70%. Indeed, from compression ratios exceeding
90%, the vibration of performance values occurs in the proposed
method, resulting in cases where the performance value of the prior
method is higher than the proposed method. Apart from these spe-
cific interpretations, in terms of a general perspective, the proposed
method preserves performance as the compression ratio increases.

Table 2 presents ablation studies that assess the contribution of
each OVCA component. IOF and SF perform better without A, but
the difference is not significant. IOPC and SPC are much better with
A, with Adaptive A using singular value performing best. Interpret-
ing this in terms of bias and variance, we can see that the addition
of regularization increased the bias, resulting in a small drop in IOF
and SF, but decreased the variance, resulting in a large increase
in performance on perturbation-based metrics. Furthermore, ap-
plying strong or weak regularization yields limited improvement,
while adjusting the regularization strength per layer based on the
singular values of the activation outputs yields significantly better
performance. The only difference between using the sum method
and using the linear system is recalculating the activation. In this
case, the prior method performed slightly better.
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Table 2: Ablation study of L7 H256 model on the California
Housing dataset for global explanations (mean * standard
deviation across five random seeds).

Variant

IOF

SF

Full

w/o Adaptive A
w/o A

w/o Alignment
Original

0.9925 + 0.0003
0.9927 + 0.0002
0.9928 + 0.0002
0.9396 + 0.0136
0.9437 + 0.0069

0.9094 + 0.0022
0.9095 + 0.0022
0.9095 + 0.0022
0.8551 + 0.0065
0.8587 + 0.0065

Variant

I0PC

SPC

Full

w/o Adaptive A
w/o A

w/o Alignment

0.9088 +0.0149
0.8881 £ 0.0065
0.8357 + 0.0086
0.6394 + 0.0383
0.6521 £ 0.0175

0.8564 + 0.0138
0.8557 £ 0.0133
0.8545 + 0.0129
0.6249 + 0.0326
0.6333 + 0.0237

Original

6.2 Local Explanation

Table 3 is the performance evaluation of our proposed method for
local explanations. In previous work, data x was sampled to create
A’ and compressed using distance-based weighting. We compare
our proposed method with prior methods in two cases, one with no
weighting and the other with no sampling at all. When weighted,
our proposed method consistently performs better. Even without
weighting, the performance numbers are the same with and without
weighting. This is due to rounding to the nearest 5 decimal places for
the change in performance with and without weighting. Although
the difference is too minimal, weighting performed slightly better.
Surprisingly, the prior method outperformed the proposed one
when no sampling is done.

6.3 Time Usage

Table 4 measures the execution time of the existing and proposed
methods. In global explanations, the time was measured using the
dataset A used to train the model, and for local explanations, the
time was measured by sampling data x and creating 100 dataset A’.
Compared to the original method, the runtime of proposed method
increased by up to 19% for global explanations. Local explanation
increased by up to 8%. Since the clustering operation is the bottle-
neck in both methods, the time complexity of both methods is the
same in big-O notation. However, the recalculation of the activation
value adds O(N l|Vl” |) to the execution time.

7 Conclusion

In this paper, we proposed a novel compression method (OVCA)
using online activation values. To address shortcomings of prior
evaluation metrics (input-output unfaithfulness, structural unfaith-
fulness), we introduced 2 metrics (IOF, SF) robust across different
model sizes and batch sizes, and 2 metrics (IOPC, SPC) enabling
more rigorous assessments.
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Table 3: Local explanation results at 80% compression on Breast Cancer, HIGGS, and California Housing datasets for model
sizes S, M, and L (L: layers; H: hidden nodes). "w/o W": clustering without distance-based weighting; "w/o S": clustering and
aggregation on a single input only. A(%): ((Ours—Original)/Originalx100).

Dataset / Model ~ Method I0 AIO(%) w/oW AIO(%) w/oS AIO (%) SF ASF(%) w/oW AST(%) w/oS ASF(%)
Breast Cancer
S (L1 H64) Original 0.9997 - 0.9997 - 0.9998 - 0.9963 - 0.9963 - 0.9965 -
Ours 0.9999 0.02T  0.9999 0.027 0.9997 0.00 0.9963 0.00 0.9963 0.00 0.9962 0.02]
M (L3 H128) Original ~ 1.0000 - 1.0000 - 0.9999 - 0.9965 - 0.9965 - 0.9962 -
Ours 1.0000 0.00 1.0000 0.00 0.9999 0.00 0.9967 0.02T  0.9967 0.027 0.9961 0.01]
L (L5 H256) Original 1.0000 - 1.0000 - 0.9999 - 0.9969 - 0.9969 - 0.9964 -
Ours 1.0000 0.00 1.0000 0.00 0.9998 0.01) 0.9972 0.02T  0.9972 0.027 0.9960 0.03]
HIGGS
S (L3 H128) Original ~ 0.9944 - 0.9944 - 0.9856 - 09772 - 09772 - 09678 -
Ours 0.9987 0.427  0.9987 0.427 0.9800 0.57] 0.9874 1.03T 0.9874 1.037 0.9533 1.49]
M (L5 H256) Original 0.9966 - 0.9966 - 0.9868 - 0.9841 - 0.9841 - 0.9628 -
Ours 1.0000 0.337  1.0000 0.337  0.9839 0.29]  0.9934 0.947 0.9934 0.947  0.9485 1.48|
L (L7 H512) Original 0.9973 - 0.9973 - 0.9851 - 0.9864 - 0.9864 - 0.9566 -
Ours 1.0000 0.267  1.0000 0.267 0.9653 2.01, 0.9953 0.90T 0.9953 0.907 0.9157 4.27]
California
S (L2 H64) Original 0.9570 - 0.9570 - 0.9501 - 0.9787 - 0.9787 - 0.9663 -
Ours 0.9915 3.60T 0.9915 3.60T  0.9336 1.74]  0.9807 0.21T  0.9807 0.21T  0.9621 0.43]
M (L3 H128) Original 0.9970 - 0.9970 - 0.9871 - 0.9851 - 0.9851 - 0.9700 -
Ours 0.9996 0.26T  0.9996 0.267 0.9858 0.12]  0.9899 0.487 0.9899 0.487 0.9645 0.57]
L (L7 H256) Original ~ 0.9993 - 0.999%4 - 0.9922 - 0.9947 - 0.9950 - 09810 -
Ours 1.0000 0.067  1.0000 0.067 0.9899 0.23] 0.9964 0.16T 0.9964 0.147 0.9724 0.87]

Table 4: Comparison of execution times between the original
and proposed method (mean + std, unit: ms). Experimental
setup includes fixed threads/cores, warm-up runs, and ran-
domized execution order (15 iterations).

Global Explanations
Original (ms) OVCA (ms)  relative
cancer 40+0.2 43+0.2 1.08
housing 476.1 + 10.6 566.8 + 28.2 1.19
HIGGS 19390.8 £ 116.1 20325.5 + 93.7 1.05
Local Explanations
Original (ms) OVCA (ms) relative
cancer 355+04 357 +0.1 1.00
housing 18.6 £ 1.2 19.2 £ 0.5 1.03
HIGGS 18.0 £ 0.5 195+ 0.5 1.08

Overall, OVCA outperformed the original method across all
four proposed metrics. In global explanation, performance improve-
ments of up to 53.7% in IOF, 12.9% in SF, 38.2% in IOPC and 33.5%
in SPC were achieved, and Local explanation saw improvements
of up to 3.6% in IOF and 1.03% in SF, clearly demonstrating that
our proposed method enhances the fidelity of compressed models
compared to existing methods. This suggests that it is possible to
generate argumentative explanations that are faithful to existing
models with lower cognitive complexity. Moreover, the processing
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time remained below 20%, suggesting that the proposed approach
can reliably provide argumentative XAl in the target application
domain.

A limitation of this study is that the effectiveness of the proposed
method has been only validated exclusively with tabular data. Re-
cent work, such as ProtoArgNet[4], based on the ProtoPNet[8],
demonstrates that argumentative Explanation is feasible for image
classification tasks as well. Therefore, future research should val-
idate our proposed method across diverse tasks, including image
classification tasks like ProtoArgNet. Also, in the local explanations
experiment, the performance of compression without sampling,
i.e., with only a single input, was rather poor. The reason is that
the size of the matrix is too small to preserve the information of
the original model with a linear system. Solving this problem to
improve performance without local sampling is key work to speed
up explanation generation in the future. Additionally, since IOPC
and SPC are metrics not applicable for local explanation, there re-
mains a shortage of suitable metrics for evaluating compression
methods in local explanation. Future research should strive to in-
troduce more metrics tailored specifically for argumentative XAI.
We hope that this work lays foundational groundwork for these
efforts and broadly contributes to the advancement and growth of
the argumentative XAI ecosystem.

8 Generative Al Disclosure

We did not use any generative Al tools beyond standard spelling,
grammar checking functions that are exempt from disclosure under
the ACM Authorship Policy.
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